Continuous approximation schemes for stochastic programs
نویسندگان
چکیده
One of the main methods for solving stochastic programs is approximation by discretizing the probability distribution. However, discretization may lose differentiability of expectational functionals. The complexity of discrete approximation schemes also increases exponentially as the dimension of the random vector increases. On the other hand, stochastic methods can solve stochastic programs with larger dimensions but their convergence is in the sense of probability one. In this paper, we study the differentiability property of stochastic two-stage programs and discuss continuous approximation methods for stochastic programs. We present several ways to calculate and estimate this derivative. We then design several continuous approximation schemes and study their convergence behavior and implementation. The methods include several types of truncation approximation, lower dimensional approximation and limited basis approximation.
منابع مشابه
APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملFully Polynomial Time (Σ,Π)-Approximation Schemes for Continuous Stochastic Convex Dynamic Programs
We develop fully polynomial time (Σ,Π)-approximation schemes for stochastic dynamic programs with continuous state and action spaces, when the single-period cost functions are convex Lipschitz-continuous functions that are accessed via value oracle calls. That is, for every given additive error parameter Σ > 0 and multiplicative error factor Π = 1 + > 1, the scheme returns a feasible solution w...
متن کاملProbability approximation schemes for stochastic programs with distributionally robust second-order dominance constraints
Since the pioneering work [7] by Dentcheva and Ruszczyński, stochastic programs with second order dominance constraints (SPSODC) have received extensive discussions over the past decade from theory of optimality to numerical schemes and practical applications. In this paper, we investigate discrete approximation of SPSODC when (a) the true probability is known but continuously distributed and (...
متن کاملConvex approximations for stochastic programs with simple integer recourse
We review convex approximations for stochastic programs with simple integer recourse. Both for the case of discrete and continuous random variables such approximations are discussed, and representations as continuous simple recourse problems are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005